
Leet, also known as 1337, is an Internet sociolect and a modification of written (in most
cases English) text. Basically, some cool hacker guy from 1980 would never write “cool
program” but instead “k3wl pr0gr@m”. For background information, take a look at
the Wikipedia article about Leet.

Your task is to write a Leet class that contains methods to translate normal language
into Leetspeek, as described in the following steps. Save your class to the file Leet.java.

Step 1: Implement Leet.toLeet(…)

Implement the method

public static String toLeet(String normal)

which translates the given string normal into Leet by performing the following
transformations. Note that the order in which the conversions are performed is important.

Normal Leet

elite 1337

cool k3wl

! !!!11

ck xx

ers 0rz

er 0rz

en n

e 3

t 7

o 0

https://en.wikipedia.org/wiki/Leet

Normal Leet

a @

Although there are plenty of other possible conversions, our lesson requires to
implement only the ones in the table above.

Hint: How to replace strings

Java’s String class provides the replace(…) method with the following signature:

public String replace(CharSequence target, CharSequence replacement)

When called on a String object, it returns a new String object in which all occurrences
of target are replaced with replacement. (Don’t be confused by CharSequence – this allows
for the method to not only operate on String objects, but also on other string-like
objects.) For example:

String original = "I am such a cool hacker!";

String modified = original.replace("cool", "crappy");

After that, the modified string contains the value I am such a crappy hacker!. The value of
the original string is unchanged and still contains I am such a cool hacker!.

Step 2: Implement Leet.allToLeet(…)

Implement the method

public static String[] allToLeet(String[] normals)

which converts all elements of the given String array normals to Leet and returns them in
a new String array. Use a for loop to convert the elements of normals. Make use of
the toLeet(…) method that you developed in the first step for every single conversion.

Hint: Arrays

An array is a container for several values of the same type. It has a fixed size that must
be specified at creation time. For example, the following code creates a new array that
can hold two String objects:

String[] myArray = new String[2];

Created this way, the elements of the array will initially hold only null values.

Each array element can be accessed through its index. The first element has the
index 0 (zero). You can write to the array:

myArray[0] = "First element";

myArray[1] = "Second element";

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#replace(java.lang.CharSequence,java.lang.CharSequence)

And you can read from the array:

System.out.println(myArray[0]);

This outputs

First element

on the console.

Reading or writing beyond the size of the array results in
an ArrayIndexOutOfBoundsException: For example, reading from or writing to myArray[-
1] or myArray[3] will fail, because only 0 and 1 are valid indexes for an array of length 2.

The length of an array can be accessed via its length attribute, e.g., myArray.length.

Hint: for loops

The syntax of the for loop in Java is the same as in any other C-like programming
language:

for (<initialization>; <termination>; <increment>) {

 <statement(s)>

}

For example:

for (int i = 0; i < 5; i++) {

 System.out.println("for loops are awesome");

}

The statement in the loop body will be executed as long as i is smaller than 5. Starting
at 0, the variable i is incremented by 1 after the statement inside the loop has been
executed (i++ is a shortcut for i = i + 1). Therefore, the println(…) method is executed
5 times and the output is:

for loops are awesome

for loops are awesome

for loops are awesome

for loops are awesome

for loops are awesome

Step 3: Write a main(…) method (optional)

Write another class which will hold the main(…) method. Within this method, create
a String array with two elements and put the following String literals into it:

• "We are elite hackers!"

• "Informatiker machen coole Sachen!"

Next, translate all elements of that array into Leet, using the allToLeet(…) method you
developed in the second step. Print the converted strings to the console. You should get
the following output:

W3 @r3 l337 h@xx0rz!!!11

Inf0rm@7ik0rz m@chn k3wl3 S@chn!!!11

Hint: String concatenation

In Java, the plus operator (+) is overloaded and also works on strings. You can use it
to concatenate strings, i.e., put multiple strings together.

For example, the code

String name = "Bob";

System.out.println("My name is " + name + ".");

results in

My name is Bob.

This even works for concatenation of strings and non-string values such as integers:

int age = 42;

System.out.println("I am " + age + " years old.");

Java automatically converts the integer value to a String object before it concatenates it
with the other two strings.

